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1. Introduction

The radiation dose received from high energy galactic cosmic rays (GCR) is a limiting
factor in the design of long duration space flights and the building of lunar and martians
habitats. It is of vital importance to have an accurate understanding of the interactions of
GCR in order to assess the radiation environment that astronauts will be exposed to.

Most previous studies have concentrated on strong interaction processes in GCR. However
there are also very large effects due to electromagnetic (EM) interactions. EM studies have
previously concentrated on single photon exchange leading to nucleon removal. However two-
photon processes also occur which lead to the production of lepton pairs with cross sections
of the order of kilobarns. Also at high energy the stopping powers from these processes can
exceed that due to atomic collisions. Thus even though very high energy GCR are not as
abundant as lower energy GCR they still must be considered due to the fact that the cross
sections and stopping powers are so much larger than normal.

In this report we describe our first efforts at understanding these EM production processes
due to two-photon collisions. More specifically, we shall consider particle production
processes in relativistic heavy ion collisions through two-photon exchange. Examples of

this broad category of processes include:

2129 — Z1 2901~ (1.1a)
2129 — Z1Zpsts™ (1.1b)
2129 — Z12oVV™ (1.1c)
212 — Z12oH" (1.1d)

in which 1+~ denote charged leptons, sts~ denote charged scalars, VTV~ denote charged
vector particles, and H 0 is a neutral Higgs scalar.

We shall limit our consideration to cases in which the colliding nuclei are identical, so
that Z; = Z, = Z. An important Feynman diagram that contributes to (1.1a), (1.1b), and

(1.1c) is shown in the following figure (fig. 1).



For process (1.1d), an important diagram is shown in figure 2, in which the triangular
loop receives contributions from quarks, leptons and W gauge bosons.

These processes are important for the following reasons (ref. 1).

(1) These kinds of processes become increasingly important as the energy of the colliding
nuclei increases, since their cross sections increase with energy. Thus their contributions
to the stopping power of high energy ions also become more important at high energies.

(2) These processes can be channels for production of charged particles, e.g., ITI~, WTW ™,
and neutral particles such as Higgs bosons, and various mesons.

(3) For high Z nuclei these processes can be used for studying non-perturbative effects in the
electromagnetic interaction.

(4) They must be taken into account in the study of strong interaction effects in heavy ion
collisions since they can lead to important background events, and must be taken into
account also in the design of experimental set up, since they can lead to significant beam
loss.

Section 2 of this report gives a brief survey of a few major approaches used in the
calculations for these processes. Section 3 examines some results of our calculations. We
then point out briefly some open questions and make a few concluding remarks in Section 4.

The purpose of this report is threefold. (1) It gives a simple, elementary introduction to
this field. (2) It provides sample calculations for illustrating the approach we use. (3) The
background and techniques developed here can be used as a general base for launching further
and more specialized studies into this field.

While it is not our main goal here to obtain new and original results, some of our results

are possibly new, and are as yet not available in the literature.

2. A Brief Survey of Different Approaches

In this section, we briefly list a few major approaches used in calculating cross sections
for the kind of processes we are interested in. The first approach has been discussed in
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references 2 and 3. In this approach, each colliding nucleus is replaced by an equivalent
spectrum of photons. Each nucleus is considered to move in a straight line, unperturbed by
the interaction. At a distance b from the line of motion of a nucleus, a spectrum of photons

is generated, whose frequency distribution has the form:

Z2 2 2
N(w,b) = T;‘ (%) (;‘j) [Kf(x) + :Ylixg(x) (2.1a)
where
_wb

Ky, K; are modified Bessel functions, see reference 4, Sections 3.7 and 15.4.
The cross section for this process can be written as an integral of a photon distribution

function multiplied by a photon-photon cross section.

dw
_/ —2 P (w1, w2) oy (w1, wp), (2.3a)
where
00 00 2r
Flopun) =2n [ badoy [ body [ doN(ur,b)
b1 min min 0
x N(wq,b0)8(t' — Ry — Ry) (2.2b)
and
1/2
W= (b’;’ + b3 — 2bybg cos ¢) / (2.2¢)

where w; and w9 are the frequencies of the photons emitted by the nuclei, b; and b are the
distances of the nuclei from the point where the photons collide. Details can be found in
Appendix A. Various differential cross sections can be derived from these equations. First
we consider zv—v'g where W is the mass of the produced charged particle pair. We note that

we = 4wiwe. Hence we can equate in (2.2a)
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and

do 1 [duw w2 w?
sz W2/ F (W1,4—w—1-) O~y ((.dl, H) . (23b)
Next we define the probability for producing a particle pair P(b) at impact parameter b by
1 do
where
/———F (w1, w2) Ty~ (w1, ws)é(b — b)), (2.4b)

in which it is understood that the é function is to be taken inside the triple integral which
defines F (w1, ws). The correctness of (2.4) can be checked by integrating both sides of (2.4b)
over all values of the impact parameter b, which then yields (2.3a) for the total cross section.
P(b) is the probability for the events in which two nuclei collide with each other at impact
parameter b, producing a charged particle pair in the process. A quantity L, known as the

two-photon luminosity function is defined by (see ref. 2, egs. (1), (9), and (10))

- [ [ S (o 2).

So
dL 1 [duw w2
dW2 = W2/ w1 F (wl,a) ’ (25b)
and
do dL
m—z = E—u—,-z-aw(W2), (250)

where we have used the fact that oy (w1,w?) actually depends only on W2 so that we can
write

Oyy(w1,we) = U"/'r(Wz)- (2.6)
It is our view that equation (10) of reference 2 is in error, and have duly corrected the error
in the above definition of the luminosity function L. For the stopping power calculation, we

use the formula

=0 [ 2 [ 2o+ wn)Flrunone,e), 2.7



where p is the number of nuclei per unit volume.
The second type of approach has been applied to a related set of purely quantum

+e~ — ete ITl™. This process can be calculated

electrodynamic (QED) processes: e
within the framework of QED. Cross sections can be obtained numerically by Monte-Carlo
integration. Approximate formulas for total cross sections have also been obtained. See
references 5 and 6. This kind of approach can be modified to apply to relativistic nucleus-
nucleus collisions, provided one takes into account properly the effects of nuclear currents.
See reference 7, Section II.

In an approach closely related to this second type of approach, Bottcher and Strayer
treated the colliding nuclei classically, by regarding them as classical charge distributions.
The remaining amplitude for the production of charged particle pair is then obtained in the

framework of QED. Thus for the case of the reaction Z1Z9 — Z1Z9l*1™ the total cross

section can be written in the form (ref. 8, eq. (10), p. 38):

_ 273 (4ma)? d*p_d®p+d®ky) £ (k%) 12 (k%)

g
4’ (2m)®2p_02p+0
1
X i(p-,s-)| A———— £2
P )[ " r—

2
) (2.8)

+ ¢2F—1312_—ml il] v(p+,5+)

where v denotes the velocity of one of the nuclei in the center of momentum frame, p— and
p4 are the momenta of the produced leptons, s— and sy are their polarizations, a(p-,s-)
and v(p+, s4+) are the lepton spinors, k) and ky are the momenta of the exchanged photons,
and f; and f, are the nuclear form factors. For any 4-vector A, the slash notation A is

defined by
3
A=) At (2.9)
p=0

where v# are the Dirac y-matrices. See for instance reference 9, Appendix 2, pages 355-361.



3. Results

In this report, we adopt the approach discussed in references 2 and 3. As samples of our
calculations, we present a number of results for the process 208 py208 pp, _, 208 pp208 pp |+ -,
and some others. Most of our calculations are done for colliding beam energies of 3400 Gev
and 8000 Gev per nucleon. The impact parameter b varies over the range from 10 fm to
1000 fm. The mass of I*1™ varies from a threshold equal to 2m; up to about 1000 Gev. In

Appendix B we list the photon-photon cross sections for the following processes:

ry — 111 (3.1a)
vy — sts™ (3.1b)
vy - VIV™ (3.1¢c)
¥y — H° (3.1d)

The derivations of some of these cross sections are also given there. By using (2.2)-
(2.6), we can then obtain various luminosity functions, differential and total cross sections,
probabilities, and stopping powers.

Table 1 shows the total cross section for ZZ — ZZe*e™. We compare our numerical
results based on (2.1) and (2.2), with the results based on the Racah formula (ref. 5, eq. (F.1),

p. 276)
_ 28(Z1Z90%)?

A=636, B=157 C=-1338,

. {2p1-p2\ _
l=In (_mlmg ) =In(27p).

Z;, pi, and m;, i = 1,2 are the charges, momenta, and masses of the colliding nuclei.



Table 1

Total cross section (kilobarn)
Colliding Incident
nuclei energy/nucleon Calculated
Z E (GeV) Our results from formula
0-16 3400.0 0.2241 x 10~1 0.2216 x 10~1
8000.0 0.3052 x 10~ 0.3020 x 101
Al-27 3400.0 0.1563 0.1545
8000.0 0.2128 0.2106
Fe-56 3400.0 0.2500 x 10} 0.2473 x 10!
8000.0 0.3404 x 10! 0.3370 x 10}
Pb-208 3400.0 0.2473 x 103 0.2445 x 103
8000.0 0.3366 x 103 0.3333 x 103

Table 2 shows the corresponding stopping power calculations. The energies of the incident

particles are given for both the case of colliding beams and also the case of an incident beam

colliding with a fixed target.

Table 2

Incident energy/nucleon Incident energy/nucleon % x (—%%) (—%f—)

E (Gev, colliding beams) E (Gev, fixed target) (Gev fm?) (Mev/cm)
0.9636 1.039 0.2129 x 10~2 | 7.02 x10~*
0.1367 x 10! 3.036 0.4585 x 102 1.51 x101
0.2704 x 10! 14.64 0.6909 x 103 2.28 x102
3400.0 0.2462 x 108 0.2032 x 1011 6.70 x10°
8000.0 0.1363 x 10° 0.1182 x 1012 3.90 x1010

For Pb-208, p ~ 3.30 x 1022 ¢cm 3




Note that the stopping power for ete™ production increases with energy. So as the
energy of the colliding nuclei increases, the contribution of this process to stopping power
also becomes more important. In contrast, the contribution to stopping power from atomic
collision and other processes first increases with energy, and then decreases. Hence, as energy
increases, eventually these other contributions become less important. To put our results
into perspective, we note that for Fe-56 at a kinetic energy of 1 Gev, its stopping power in
water due to atomic collision is around 10* Mev/cm, see reference 10, figure 2.15, p. 74.

In figure 3, we give plots of W2ﬁz as a function of W in different ranges of W. The
differential cross section ﬁg can be obtained from f—ul,’g by multiplying f—ul,‘, by a -~y cross
section as in (2.5¢).

+s,

Figures 4a—d show plots of 0.77(W2) for the reactions vy — Iti™, vy — s
vy —= VTV~ and vy — HO.

Figure 5 shows plots of P(b) for the reaction 208 Pb208 pp —, 208 pp208 pp e+~ at different
energies.

Figure 6 presents plots of the total cross section for the process 208 pp208pp
208 pp208 pp, O

We have compared some of our results with the published results of Papageorgiu and

Baur, and found good agreement. In the following, we give a sample of such comparisons.



Table 3

2 dL
Woowr
Papageorgiu's
W (Gev) W/\/s Our result result
Incident 100.0 0.7070 x 10~4 0.3152 x 108 0.33 x 10°
energy/
nucleon 141.4 0.1000 x 10~4 0.8630 x 102 0.90 x 10°
(colliding
beams) 212.2 0.1500 x 1073 0.1206 x 102 0.13 x 102
E = 3400.0
Gev 282.9 0.2000 x 10~3 0.1990 x 10! 0.21 x 10!
E = 8000.0 19.0 0.5709 x 10~4 0.6129 x 103 0.70 x 103
Gev
280.0 0.8413 x 10~¢ 0.1708 x 103 0.20 x 103
370.0 0.1112 x 1073 0.5444 x 102 0.60 x 102
460.0 0.1382 x 10~3 0.1881 x 102 0.20 x 102
550.0 0.1653 x 10~3 0.6866 x 101 0.70 x 10!
640.0 0.1923 x 1073 0.2606 x 10! 0.28 x 10!




Table 4

Incident energy/nucleon (colliding beams) E = 3755.6 Gev
o, (fm? Gev™2)

W(Gev) Our result Baur’s result
0.1200 x10~2 0.6188 x1013 0.62 x1013
0.1414 x10~2 0.4923 x1013 0.48 x 1013
0.1732 x10~2 0.2777 x10!3 0.28 x10!3
0.2000 x10~2 0.1714 x1013 0.17 x10!3
0.2200 x10~2 0.1222 x1013 0.12 x1013
0.2400 x10~2 0.8894 x10!2 0.92 x1012
0.2600 x10~2 0.6607 x1012 0.69 x10!2
0.3000 x10~2 0.3846 x 1012 0.40 x1012

Papageorgiu and Baur’s results were taken from appropriate graphs in their papers (ref.
2, fig. 3; and ref. 3, fig. 9).

Cross sections are expected to scale roughly as ZfZ%. For our case Z1 = Z9 = Z. So in
order to obtain the corresponding cross sections, luminosity function, or stopping power for
different nuclei, one can simply multiply the results we have here by a factor (7211%%1 Thus
if one wants the results for Al Fe collision, one can multiply the results presented in this
section by the conversion factor %‘ﬁ The different nuclear sizes are expected to affect

the results also. However for a rough order of magnitude estimate, such a simple scaling is

expected to be reasonably accurate.
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4. Open Questions and Conclusions

For small values of b, and m;, such as m; = me, P(b) exceeds 1. This signifies the
breakdown of perturbation theory. The question as to how to extract meaningful results
from theory is under active investigation. See reference 11. In our simple approach,
we have regarded the nuclei as point charges. By using form factors for the nuclei, the
problem of violation of unitarity is expected to be somewhat ameliorated. However this
problem still needs to be addressed, because for high Z nuclei, the coupling constant for
the electromagnetic interaction is of the order Ze, even with nuclear form factor taken into
account, which may therefore still lead to a breakdown of the perturbative approach to cross-
section calculation. In a collaboration with Mirek Fatyga of Brookhaven National Laboratory
(BNL), we shall investigate lepton pair production and neutral meson production (such as

0

, 170) in high energy heavy ion collisions. In these processes, we shall look for possible
deviation in the measured rates or cross sections from values calculated by perturbation
theory.

In many studies of the type of processes considered here, various approximations are
used. We have mentioned the equivalent photon approximation, and the semi-classical
approximation. Also, in the approach of references 2 and 3, which we have adopted in
this report, the effect due to phase coherence of the electromagnetic field generated by the
nuclei has not been properly taken into account. One needs to investigate how valid these
approximations are and what the regions of validity are for them.

When one is primarily interested in the kind of electromagnetic processes discussed
here, one needs to be able to estimate reliably the background due to strong interaction.
Furthermore, there are other electromagnetic processes that also need to be studied, in
addition to the ones we have looked at, even though the ones we have considered are among
the most important.

In summary, we have given a brief introduction to two-photon exchange processes in
high energy heavy ion collisions. Our calculations are based on an approach discussed in

11



references 2 and 3. In view of the significance of this class of processes, and the many open
questions that remain to be answered, we believe that further study in these areas will be
valuable, not only for gaining a better understanding into these processes themselves, but
also for studies and experiments in strong interaction physics.

In the following Appendices, we discuss the derivation of some of the formulas we have
used. We look at the equivalent photon approximation in Appendix A and show how this is
applied to the two-photon exchange processes in relativistic nucleus-nucleus collisions. Then
in Appendix B, derivations are given for some vy cross sections. Appendix C provides a
derivation of the fermion contribution to the process H® — 4. In Appendix D, we look at
the details of how certain integrals encountered in our calculations are evaluated. Finally
Appendix E gives a simple derivation of the formula (2.7) used for calculating stopping

power.
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Appendix A. Equivalent Photon Approximation

Consider a charge ¢ moving along the z-axis. The effect of this charge on another charge
located a distance b from the z-axis can be approximately calculated as follows.

By first considering the electromagnetic (EM) field due to ¢ in its own rest frame, and
then making a Lorentz transformation to the laboratory frame, it is straight forward to show

that the electromagnetic field due to g is given by

E; = —quyt(b® + '721)2t2)’3/2 (A.1a)
Es = gby(b? + ¥*v?t%)~3/2 (A.1b)
By = 2By =q - by(t? +/%0*) ™ (A.lc)
E3=B;=By=0 (A.1d)

t = 0 corresponds to the instant when ¢ passes through the origin. When v =~ ¢, the
components E; and B3 can be thought of as the components of a pulse of plane-polarized

EM wave travelling along x. The energy flux of this EM field is given by the Poynting vector

c

E x B. (A.2)
4

S=
So ignoring E; for the moment, S points along z, and its magnitude is
= c
S| = — EZ, A3
151 = ¢ B3 (4-3)
in which we have made the approximation % ~ 1. Over a unit area, the flow of energy is

oo, ¢ ©
/ 18] dt = — / E2(t) dt. (A.4a)
-—00

-0

Using Parseval’s theorem, we therefore have

/m 1§ dt = = /_°° |Ep(w)[? du, (A.4b)

—00 47
where E is the Fourier transform (FT) of Ey, defined by

~

__1_ oo —twt
Fw) = —= /_ et (A.5)
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Hence the quantity S’g(w), defined by
S2(w) = — |Ex(w)P?, (A6)

can be thought of as the energy per unit frequency per unit area of the EM field at frequency
w generated by the moving charge q. To obtain the photon number per unit frequency per
unit area at frequency w, we set na(w) = h}—ﬂS’g(w), since each photon has energy fw. For
the function na(w), the dependence on the distance b is implicit. To make the dependence

on b explicit, we can write instead

na(w,) = 281w, (A7)
From (A.1b), we obtain
Bo(w) = L[240 g, (“0
Baw) = 222 &, (7) (A.8)
Hence
2 ¢ 2 rq\2fwb 2 9 [wh
52(“))—;;‘_‘;5 (3) (7—1)) Kj po (A.9)

The remaining component Ej, of the EM field can be complemented by a magnetic field so
that they can be considered to form a pulse of plane polarized EM wave. The same treatment
can be applied to these components, so that the energy spectrum can be similarly obtained

as before. The result is

(A.10)

The effect of this pulse is roughly ;12 that of the first pulse. So at high velocity, the second
pulse can be neglected when compared with the first pulse.

In conventional treatment, the two pulses are simply added together, so that the effect
due to the original moving charge ¢ is replaced by a spectrum of photons whose number
density is simply the sum of the number densities from the two pulses discussed above. Thus

14



one set

dmy T (A.11)
x | K? wb + 1 K? wb
A/ T2 T\
After identifying q = Ze, g_zé = a, and noting
Si(~w) = §;(w) for i=1,2, (A.12)

the photon energy spectrum
N(w,b) = 51 (w) + 82(w) + §1(—w) + S5(~w)
= GNHEEEHE)
S ) )] ws

Application of the Equivalent Photon Approximation to Two-Photon

ol

Exchange Processes

When two nuclei Z; and Z5 collide with each other, their EM interactions can be studied
in terms of the EM interaction of the spectra of photons emitted by the nuclei. The situation
can be pictured as in figure A.2.

The two photons 7] and -, are considered as colliding head-on with each other. Taking
a cross-sectional view perpendicular to the direction of motion of the nuclei, the situation
can be pictured as shown in figure A.3.

From our previous discussion, the number of photons emitted by Z; at P, whose
frequencies are between w; and w; + dwy, is n(wy,b;)dwy by dby dg;, where n(wy,b;)
is defined by (A.11). Similarly, the number of photons incident at P emitted by Zs is
n(wy, be)dwy by dby dpg. Therefore the EM cross section for the collision of Z; and Z5

through two-photon exchange can be written as

o =/ n(wy, b1) n(wy, b2) o4y (w1, wr)by dby déy ba dby doa

X 0(b— R; — Ro)dw; duwy

(A.14)

15



in which R; and Ry stand for the nuclear radii of Z; and Z3, and the f-function takes into
account that when b < R; + Ry, the two nuclei overlap, and the EM interaction is swamped
by the strong interaction of the nuclei, and so one needs to restrict b to values > R; + Ry if

one wants to look only at EM interactions.
Since b = (b% + b% — 2b1bg cos ¢)1/ 2 the integration [ d¢; d¢g in (A.14) can be simplified

if one integrates over ¢; and converts the integration over ¢7 into an integration over ¢:

/ d¢y dpy — 2w / do (A.15)
So (A.14) can be rewritten as

o= 277/"(w1, b1) n{wa, bg) gyy(w1,w2)8(b — R1 — Ry)

x by dby by dbg d¢ dwy dws.

(A.16)

If one now substitutes for n(wj, b;),4 = 1,2, using (A.11), one obtains (2.2).

Concerning the cutoff for b; and by, we observe the following. (A.14) involves an
approximation, which consists of replacing the virtual photons emitted by Z; and Z3 with
real photons 1 and 7. This approximation is valid only if the masses of the virtual photons
A; and A are small compared to the mass of the produced system W. (See ref. 5, Sections 6.1
and 6.7). By the uncertainty relations, A; = 7};, i = 1, 2. Hence in order for the approximation

in (A.13) to be valid, we must have A; < W, or ,}; < W. Therefore,

1

If b; does not satisfy (A.17), the contribution to the cross section is small, and is generally
considered negligible. See reference 5, Sections 6.1 and 6.2, and reference 12, Sections 7,
7.1-7.3. Another consideration for the values of b; is that since we are interested in the
effects of each nucleus acting as a single entity rather than as a collection of nucleons acting
independently of each other, i.e., we are interested in the coherent effects of the collection of
nucleons, we need to restrict

b; > R;. (A.18)

16



So for reactions in which the Compton wavelength of the produced system is smaller than

the nuclear radii, i.e., ‘%7 < R;, we can set the minimum of b; by

bimin = R;. (A.19)

This is the case for u*u~ and 71~ pair function. But for ete™ pair production, the

1

Compton wavelength of an electron - is >R;. So we set the minimum of b; by

2
bimin = W (A.20)

Hence in general we set
2
[ — =
imin = Max {Rl W}
Note that when W = 2m, in (A.20), bjpmin = mic, which is the cut off generally accepted in
the literature for ete™ pair production (see e.g., reference 3, Section 3). With b;pin defined

by (A.19) and (A.20), our calculations for e¥e™ pair production show good agreement with

the results from the approximate formula (3.2), as is shown in Table 1.
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Appendix B

First we list the cross sections for the processes in (3.1): vy — [T~ ,yy —= sts™,yy —
VtV~, and vy — H°. (See ref. 2, egs. (14)-(17), pp. 159, 160; and ref. 13, egs. (10), (11),
p. 95.)

_ dma? 1 1 1
o(yy — It )=W[2(1+y,—§y,2)ln(ﬁ+ ;;—1
— (1 +w)Vi-ul, (B.1a)

o(yy—stsT) = 2;‘,—0;2 [(1 +s)v/1 —ys — 2ys (1 - % ys) In (\/1% + \/F)] ,

(B.1b)
-y 8ma?1 3 1+A
where
4m§Z 4m?2
w=e Y=y (B.2a)
m2
tv:: —W%, A= V]. —4tv. (B.2b)
W is the total energy of the two photons in the center of momentum frame.
oy — HY = 80 62 — md) (B.3)
Y = my H :
where I" can be written as (ref. 12, eq. (10), p. 95)
2 3
=—-—""2 ]|, B4
e (B4
and [ in turn has the form (ref. 13, eqn. (11), p. 95)
I=>" @ Ii+)Y Ii+1y, (B.5a)
q l
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Ig =320 + Ag(40g — 1) f(N)] (B.5b)

Iy =2M 4+ NN = 1) (), (B.5c¢)
Iy = 3w (1 = 22w) f ) = 3y — % (B.5d)
where for A > %
FO) = =2 (arcsina-\l/—x>2 , (B.6a)
and for A < ;1—
f(/\)=%(lnz—i—)2—-7;—2+i7r ln%—j_:, (B.6b)

1 1
i:— —_—
n 2:!:\/4 A (B.6c)

The subscripts ¢, [, and W stand for quark, lepton and W-boson, respectively.

2
m;

A = , for i=gq,l,W, (B.7)

[

my
and m; are the rest masses of the coresponding particles. my is the rest mass of HO.

In the following, we give the derivations of the cross sections for the processes

vy —sTs, (B.8)

yy — 1. (B.9)

We also give a derivation of the relationship between ¢ and I' for the process
Ny — HO (B.10)

Derivation for vy — s¥s™. The lagrangian for the system, including the EM interac-

tion, can be written as

Lon = - (g +iedy ) #° (g = et ) 0 - m¥e*o (B.11)
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in which ¢ denotes a scalar field operator, A, denotes the photon field, 4 = 0,1,2,3. We

use the convention that repeated indices are summed over, so that for example,

A AP = AgA° + A1 A + AgA® + A3AP (B.12a)

= ApAy — A1 A — AgAg — A3As. (B.12b)

This lagrangian can be separated into a free part, and an interaction part, so that

. 0 s i
Ling = te (¢+ A# 55; - ‘T;i—u Au¢)

+e? A*AL9T .

(B.13)

To simplify notations, in this derivation, we are using m instead of mg to denote the mass
of the scalar particle. The S-matrix element that contributes to (B.8) can be written in the
form

< p_;pISM + 8P ky €15 kp, €0 > (B.14)

in which p+ denotes the momenta of s%, k;, ¢; are the momenta and polarization vectors of

the photons, ¢ = 1,2, and S(2) is defined by
-2
S@ = % T / Lint(x1)Lint (z2) d*zy d*z, (B.15)

where T denotes the time-ordering operator. Contribution from S can be represented by
the diagrams of Figures B.1a and B.1b.
Using (B.13) and (B.15), and standard techniques of field theory, one obtains

< p—; p+|SPIky, €15 kg, € >

1
= ie?(2m)4(2p—o - 2po - 2k1g - 2k20) 72 Q7
f’f(kp + p—p)es(P+v — kv) n fg(k;; + p-p)e{(p+v — k;,)
k2 —m2 +ie k2 —m2 +ie
x 64(p— +p+ — k1 — k), (B.16)

where k = p_ —k; = ky —p4+, k' =p- —ky = k1 — p+, Q is the normalization volume, and
€ denotes an infinitessimal quantity.
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Likewise S(1) is defined by
sO—iT / Lis(z) d', (B.17)
and

< p-i P+ISWlk1, €15 ka, €2 > = ie?(2m)4(2p_o - 2p10 - 2k10 - 2kg) Y2
x Q™2 2¢; - €9 54(p- + p+ — k1 — ko). (B.18)
The diagram representing this matrix element is shown in figure B.2.

The total cross section is obtained by squaring (B.14), averaging over photon polarizations

€1 and €2, integrating over phase space, and finally dividing by the photon flux. Hence we

have
2 3 3
1 d°p-d°p
0=/Z E <p-ips| SV + 5@ | ky,eq;kp,e0 > Wi

€1,€2
Q 1

2
o — B.1

x % x 52 ¥ R (B.19)

in which T, is the normalization time. Substituting (B.16) and (B.18) into (B.19), we obtain

T, d3p-d3py Q3
(2m)¢  (2m)8 2T,

o =ca® [ 1(6) 64 (o +ps — ki — ks)

4 204 N
e* a*Q2 _ .
= 2m)4 - 2¢- (2m)6 (Pg.a - m2)1/2 %/0 f(0) sin 8 d x 2. (B.20)

where

£(8) = 1 >3 [61 (k+p-)ez - (p+ — k)

b k2 —m2 + e
2
ea- (K +p_)er- (o4 — k)
%€, - , B.21
+ k"2 —m? + e e ( )
a = (21)* (2p—0 - 210 2k10 - 2kao) "2 Q2 (B.22)

and @ is the angle between p_ and the z-axis, which is chosen to be along the direction of
El. We shall work in the center of momentum frame of the two photons, and use the fact

that for real photons,
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€1 k1 =€-kp=0. (B.23)

After some algebraic manipulation, we obtain

_ nd 4 1 2 1
10 =P [ AT F e T
. 1 1
+2—2ﬁsme[l—ﬂcos0+1+ﬁc089 ;
in which
8= |:| (B.24)

(B.20) can be simplified by carrying out the integration over 8, so that

/0 " £(6) sin 0 d6 = 4(2 — %) + 2(8% + 1)(8% — 1)[13 In|~ ’_“gl, (B.25)
and hence
4,204 p2_o
O @ g PXm
x [4(2-[3 )+2(8 +1)(87 - 1)5 ln|1_ﬂ‘]. (B.26)
Using the definition of a in (B.22), we then obtain
_ ot (omBO-4_L a P, 2
(2m)°Q 160, 0 x % X =5~ % 21 X [4(2 B8
+2(82+1)(82-1) In :ig ” (B.27a)
84 1 1 2 ) 9
= PR X 2 X [ (2-B%)B8+2(8°+1)(B°-1)
x In itﬁ ] (B.27b)

In the “natural units” in which one sets A = ¢ = 1, this result can be written in the form

+ﬁ]

el

(47r)2 4p 2

(B.28)

x 2m [(2 ﬂ2)5+ (ﬁ2 + 1)([32 -1) x - ln I
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2
In terms of the variables y = 4Wm7’ W = p_o + p+o = 2p—p, We can write

L] e

. . 2, . . .
in which o = f,—r is the fine structure constant. This result is the same as the one obtained

1
a=a2xW2-x27r 1+y)v/1-y—-2-y)yln

by Papageorgiu (ref. 2, eq. (15), p. 159).

Derivation for vv —111~. For this case the interaction lagrangian can be written in

the form
Ling = —e ¥(z) A(z)y(z), (B.30)

in which ¥(z) denotes the lepton field operator. A(x) = A,(x)y* and v, u =0, 1, 2, 3, are
the Dirac y-matrices. (See ref. 9, Appendix 2, p. 335-361.) ¥(z) = ()70, where ()
is the hermitian conjugate of 1(x). The second order term in the S-matrix is defined by

(B.15), with Ly (z) defined by (B.30). The initial and final states can be denoted as

’i > = ’kl,el;kg,eg >, (B.31a)

‘f > = ‘p—as-;p+1s+ >, (BSlb)

in which we have already defined k;,¢;,5 = 1,2 as the photon momenta and polarization.
p., 8, are the momenta and spins of It and I~ respectively. Following the notations of
reference 9, appendix 2, we can write the S-matrix element < f '5(2)' 1> as

) v(p+1 3+)

< fls(z)li > = —-e2a [ﬁ(p—,s—) flpz(_k—mzr'r_:__);z

_ i +m
+ u(p-, s-) izk—,z(_Lm'zT)i—e f1 v(P+,S+)] 8- + p+ — k1 —k2),
where
k=p_—ki=ky—p4, K =p- —ky=k1 —ps+, (B.32)

a = (2m)% (2p—0 - 240 - 2k10 - 2ka0) /2072,
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u(p-,s-) and v(p+,s+) are the spinor wave-functions associated with {~ and I*. For
simplicity of notations, in this derivation we use m instead of m; to denote the mass of the
lepton. This S-matrix element can also be represented diagrammatically by Figures (B.1a)
and (B.1b). The total cross section is given by a formula similar to (B.19):
9 2 d p_d3p+ 221
o=/ 2 | <s| s> [ =5 ¥ (B.33)
s-sy

Performing the sum over the photon and lepton spins, we can write

QT,

2n)d {(k2 —m? 4 i) 72

l <f|S '2>| —Ze4a264(p +py — k1 —k9)

€1.€2, €1,€2
8,34

xTr(p-+ m) g1 i(k+m) do(Br — m) fo(—i)(K+m) ]
+ (k2 = m? +ie) " (kK2 — m? +ie) "L Tr [(F- + m) Ai(k+m) a(Fs+ — m) A(K +m) )
+ (k2 = m® +ie T (k% = m® +ie) 7! Tr [(B- + m) (K +m) A(Bs — m) fa(K+m) 4]

+ (kK2 —m2+i)"2 Tr (- + m) o(K' +m) Aa(p+ — m) A(K +m) &)} (B.34)

in which T'r denotes the trace operator. From (B.34), it can be seen that the sum in (B.34)

can be naturally divided into four terms:

Ty =Tr[(p- + m) A(K+m) a(d+ — m) a(K+m) 4], (B.35a)
Ty =Tr[(f-+ m) A(K+m) fa(b+ — m) 4K +m) &), (B.35b)
T3 =Tr [(- + m) (K +m) A(d+ — m) d(k+m) 4], (B.35¢)
Ty =Tr[(P-+ m) (K +m) AP+ — m) A(K +m) f] . (B.35d)
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Hence we can write

3 [ < f‘s(‘*){z > [ = 0264 p_ + py — ky — ky) L0
& (2m)*
3_,8+
x 3 {(k* —m? +ie) "2 Ty + (k2 —m? +ie) T (K% - m? +ie) ™! (To + T)
€1,€2
+ (K% = m? +ie) 721y} (B.36)

After some straight forward though tedious mathematics, one arrives at the following:

1 4 m?  2m? 3. .3 4
- Z Ty = 8kjp(1 — B cos 8) (1 + 5 + -5~ cos 8 + B°cos 0) —-8m*, (B.37)
4 €1,€2 klO 10

1 _1 _ard g2 2 2 2

I Ta=7 Y. T3 =8kys(1 - cos’d) [1 — 8%(1 - cos e)] . (B.38)

€1,€2 €1,€2
m2 2 2 3 4
- Z Ty = Skm(l + B cos )| 1+ — 5 B cos -7 cos® 6 | —8m?, (B.39)

61,62 klO k

where 3 = J———-l From (B.33) and (B.36) we obtain

44 9o Q1
(2m)4 (27)8 2T,

/{ Z[ —m? + i) 2T1+(Ic —m2+ie)'1(k'2—m2+ie)_1 (T + T3)

€1,€2

+(k? —m? + ie)‘2T4J}d3p-d3p+64(p- +py — k1 — kg)

o = e*(2m)8(2k10)

4 1 1 . -
(26;)2 1663, 2cB 10 X / {z Y (K - m? +ie) Ty

€1,€2

+(k% —m? +ie)" (K2 —m2 +ie) " (T + T3) + (K% = m? + ie)'2T4]}

X %sina df x 2=. (B.40)
Now we use

k2 — m? = —2k%(1 — Bcos ), (B.41)
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k? - m? = —2k%0(1 + B cosf), (B.42)

together with (B.37), (B.38), and (B.39) to arrive at

71
/ Z —m? + i€) 2T1 sinf df = / Z —m? + t¢) 2T4Sln0 df

6162 5152
=304~ 87 o243 -1|1”’ amf_1 (B.43)
ko ko kfo 1- 8% .
"1 2 2, i a=lm
/ Z(k —m? +1ie) L (k"2 —= m? + ie) "1 Ty sin 6 d
6162
"1 2, . n—lmn s
Z —m? +ie) (k% — m? + i) T3 sin 0 df
6162
_a1_gya g2 2, _ g2 +8
=8(1- 7 +3 62 - 52~ 691 - A)nl 5| (B.44)
So from (B.43) and (B.44) we have
"1 -2 2 2, -y\~1
Z —m?+ie) 2T + (% = m? +ie) " (k2 —m2 +ie)”! (T + Ts)

51 €2

+ (K% = m? +ie)~2Ty]sin 6 df

=-8(2- %) + %[2 +3(1- 4% - (2- 6% (1- )i ‘

1 /1
ﬁ—'— 5—-1', (B.45)

where y = %":— =1 — 2. Putting this into (B.40), we have

+ﬁ|
1

_ 16 y2
=-8(1+y)+ 5 (1+y——2—)1n

et 1 1 2 2
~ (2m)?16k%, ﬂ“’xs[ (1+y)+§(1+y_y7)

Ninys ke
(4;)2-mx41r[ (1+4y) \/1_—-——+2(1+y——)1n' F”
W22x41r[ (1+y) \/1T+2(1+y——)ln| \/;-_1‘] (B.46)

in “natural” units. This result is the same as the one obtained by Papageorgiu (ref. 2,

eq. (14), p. 159).
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Derivation for vy — &

s° is a neutral scalar. Using p, to denote the momentum of s, the cross section for this

process can be written as

0'—/ =3

€1,€2

ki,€1;k9,€9 > ‘ 20X — X =, (B.47)

@38 T2 T,

<ps|S

in which S denotes the S-matrix. For the reverse decay process s® — 7v, the width I can

be written in the form

283k d3ks

'=— / < k1,€1; ko, €2|S|ps > —1- "2 B.48
Tp 612;2 ’ (2)8 (B.48)

From conservation of momentum, we can write
< ps|S|k1, € ko, €2 > = < ps|T k1, €1; k2, €2 > 6%(ps — by — k2) (B.49)

From (B.47) and (B.49) we now have

2
lel, €1; ko, €2 > ’ 6(pso — k10 — k20)

1
o= Z Z < ps
€1,€2
1 Q2 QT,
B.50

X (2m)3 2cT, (27)2 (B-50)
1 Q3 2

@) > | < ps|T|k1, €15 k2, €2 > | 8(pso — 2k1) (B.50b)

€1,€2

In (B.50), we assume that we are working in the rest frame of s°. Likewise (B.48) can also

be rewritten in the form

2,2 2
1 klO : Q¢ QT,
r Toqi;z < ky,€1; ke, €2|T|ps > ’ 5 X 4m X (21r)6——(27r)4
3 2
YY) ko z < k1,€1; k2, €2|T|ps > i (B.51)
(21r) =
From time-reversal invariance, we know that
2 2
Z <k1’€1;k2’€2Tp3>' =Z <p3Tk1761;k2,52>’ . (B52)

€1,€2 €1,€2
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Therefore from (B.50) and (B.51) we now have

1 1
o == (2m)2 T x — 8(pso — 2k10)- (B.53)
8¢ k1o
In the rest frame of s°,
o = (@n)PT-L 5(m? — 4k3y) = B To(m? — 5) (B.54)
- ko~ W T s °h '

in which s is the square of the total momentum (k; + k2)2. For vy — H® in which H® is a

neutral Higgs particle, I' can be written in the form given by (B.4)-(B.7).
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Appendix C. Fermion Contribution to I'(H° — 7).

In this appendix, we derive the Fermion contribution to the decay width of the decay of a
Higgs particle H° — 4+. For this case the interaction lagrangian can be written as (ref. 14,
egs. (22.58), (22.78), pp. 676, 682)

Lint(z) = L) () + LP(), (C.18)
where
£)(2) = by A)bp(@), L8 (@) = hidhp(@)n(z)w (). (C.1b)

Y(z) is the fermion field operator, A,(z) the photon field operator, and 7(z) the scalar
Higgs field operator. gy denotes the charge of the fermion, and hy the coupling between the
Higgs scalar and the fermion. The process H? — 4+ is third order in the interaction, so that

the relevant term in the S-matrix is
sG) = l—,— [/ Lint(%1)Lint(22) Line(z3) d*z1 d'zy d'z3 (C.2)
The initial and final states can be denoted as
|t > = |pp, >, and |f >= |k1,€1; ko, €9 >, (C.3)

in which pj, denotes the momentum of the Higgs scalar, k;, €;,j = 1,2, are the momenta and
polarizations of the the photons.
We use m¢ and mpy to denote the masses of the fermion and Higgs scalar. The width for

the procéss is given by

/Z \ <k1,el,k2,ez|5 3)|Ph ( M Q2. (C.4)

29



The S-matrix element can be represented by the diagrams:

Employing standard techniques of field theory, we find

< ky, €1; k2, Ezl 5(3)|Ph >= “q)thf(zpha - 2k - 2kgg) /2 ~3/2

b /d4p1{[(p1 —k1)2 —m}+ie]
-1

+ [(P1 — kg)? —m} +ie] Tr [(1‘1 +my) fa(#1— Ko +my) Ai(B1— Ki1— Ko +mf)]}

1 Tr[(Pl +my) A(i— K1 +my) fa(th — Ki— Ko +mf)]

-1
x (pf — m% +ie)™! [(p1 — k1 —kp)? —m} + ie] §4(ky + k2 — pp)- (C.5)
We can separate the two terms on the right hand side of (C.5) and let 503) = S£3) + Sés),

so that

3 ~1/2 -
< k1,€1;k2,€2| 8§ )lph > = —q}h(2ph, - 2k10 - 2ka0) /% Q3284 (ky + k2 — p)
-1
x [ di [ - k)P - md +ie] of - 40!

-1
x [(pl — ky = kp)? —m% + ie] ¥, (C.6a)

where

T = T, [(h + mp) 41— b +myp) o(hi- - B +mp)],  (Cb)
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and

< ky, €15 k2,€2‘ 5'5‘”' ph > = —qh(2pn, - 2k10 - 2ka0) /% Q73264 (k1 + ka2 — ph)
-1 -1
x /d4p1 [(pl - 15:2)2 - m} + ie] [p% - m} + ie]

-1
x [(p1 — k1 — ky)? = m? + ie] 7, (C.7)

where
T =Tr [(#1 +my) fa(tr— K2+ my) fi(dh— K1— K2 + mf)]- (C.8)

The evaluation of the matrix elements (C.6) and (C.7) are quite similar. So we need only
consider (C.6) in detail for illustration. By evaluating the trace in (C.6b), and using the fact

that in the center of momentum frame of the two photons,

€1 -ki=¢€-kp=¢€2-k1 =€3-kag =0, (C.9
and also
k2 =ki=0, (C.10)

for real photons, we find

T = dmp(p1 -1 p1 -2 — €1 e p}) +8mys €1 -2 p1 - by

+4mf(—k1 -k2+m§)61 - €9. (C.11)

Now we use a standard technique of Feynman parameterization (ref. 15, Section 3.2,

pp. 160-197).
-1 -1
(p} —m? +ie)”! [(Pl ~ k)2 —m? + ié] [(Pl —ky —kg)2—m?+ ie]
1 1-zx -3
=2 [ dz [ ay[o - @+ ] (C.12a)
0 0
where

Q* = zkf + y(ky + K5), (C.12b)
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p%E Qz—mf+k1x+(k1+k2)2y+ie

=-Q? - m? %+ 2k; - kyy + ie. (C.12¢)
Now (C.6) can be rewritten in the form

< ki, €15 kg, 62‘39) ’Ph >= —q;‘{hf(%ho - 2k10 - koo) TV2Q73/28%(ky + ko — pp)
1 l-z -3
X 2/(; dx/o dy/d4p1 [(pl —Q)2+p¥] T1(3). (C.13)

From (C.11) and (C.13), it is apparent that in order to evaluate (C.13) we need to compute

the following integrals:

Y= /dw dy d*py plp} [(m -Q)?%+ p%] -~ (C.14)
It = /da: dy d*p; p‘f[(pl -Q)?%+ p%] —3, (C.15)
o= [ dody d'm [~ Q% +41] (c.16)

These integrals can be computed using the method of dimensional regularization in which

one first computes the following integrals:

I} (n /da: dy d"p1 pyp{ [(pl Q)+ pl] 3, (C.17)
tn) = [z dy ot (o - @2 +48] (C.18)
o) = [ dz dy a1 - @+ 4], (C.19)

in which n is a real number, which in the final result is allowed to approach 4. Details of
this process is given in Appendix D.

From the results in Appendix D, we find

4p“ My 24 ” )
e T o pjug i Tl -] o
Pl Py
2 om
& PI - e
/ pl [ 2+P¥]3 KX (ca)
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and

/ d*p [( ! = —i %2 —1—% (C.22)

Define

x T, (C.23)
By using (C.9)-(C.12), (C.20)-(C.23), we find
1 1-y 1
J=—i7r2/dx/ dy = |4m; (p? — Q?
1 A | Yy p [ f (P1 Q )
+8msQ - ky +4my (—k1 -k + m?)] €1 - €2. (C.24)

Using the definitions of p; and Q in (C.11) and (C.12), we can simplify (C.24) to

1 1-z 4 - —
.2 y(l—z—y) -1
= — . 2
J1 e 2my € eg/(; d:z:/o dy a D — Nt e (C.25)

m2 m2
where A = T k2 = #
The integral in (C.25) can be done after some changes of integration variables and applying

some techniques in complex analysis. The result is

Ji = —in? 2my €] - €2J0, (C.26)
m2 1
where for A = > 7
My
1 2
Jy=2-2(4X —-1) |arcsin | —— , C.27a
o=2-2(0 - [arsn (7| (C27%)
andfor)\ﬁ;li,
2
2 R
Jo=2+@—1){-T 41 |p|2 V1
2 2 1 1 Y
27V1T

}, (C.27b)
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From (C.5), (C.6), (C.23) and (C.26) we have therefore

3 ~1/2 o=
<Ky, enkp, elSUpy > = ~g} hy (2pho - 2k10 - 2k20) /2 Q7320164 (ky + kg — py)
= —q} hy (2pno - 2k10 - 2k0) /2 7%28% (ky + k2 — p,)

X (—i1r2 X 2mg X €] - €2 Jo) . (C.28)

It is straight forward to check that
k1, €15 kg, €283 |pp > = < ky, €15 kg, €] SO C.29
< k1, €15k, €2|S57 [pp > = < k1, €1, k2, €257 |pp > (C.29)

Therefore using (C.3)-(C.8) and (C.28),

11

I"=T0

> 4q} h2 (2pho - 2k1o - 2k20) "1 Q36 (k1 + k2 — pi)
r.e

T, d3k,d3ko0?

x 14 x 4m3 x (e1 - €2)? | |2 x i ()P (C.30)
Now
> (e1- )2 =2, 2kyg = 2kyg = ppo =my, (C.31)
€1,€2
Therefore
42 4.2
Ght T L / 3
= 2 d’ky6 (k koo —
r (2)10 2 m% |Jol 16 (k10 + k20 — Pho)
1

——=q; h

= 16 x (2n) af b
hy is related to the Fermi coupling constant G by h} = m% x 2v/2GF (ref. 14, Section
22.2, eqs. (22.58), (22.70), and (22.83), pp. 676, 679, 684)

1
= 6@ ¥ 4 2V2GE m3; A2 |J,|?

_ 94 @%GF 3.9 0
= 1Lt 25 mi? (C.33)

We note that QeL is the charge of the fermion in units of the electron charge. Our result
agrees with that in the literature. (See ref. 13, egs. (10) and (11), p. 95.) We note that the
sign of the imaginary part of J, in (C.27b) is opposite to that of reference 12, equation (11).
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However, since only |J¢,|2 enters into quantities of physical interest, such as I' and o, therefore

this difference in sign of the imaginary part of J, is not significant.
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Appendix D. Evaluation of certain integrals.

In this appendix, we outline the procedures involved in evaluating the integrals in (C.14)~
(C.19).

The following integrals can be evaluated by standard methods of calculus.

* __uMdu —24+m+1
Jy G agm = Omex a7 (O

provided m is even, m > 0, £ is an integer > 0, £ > % + 1, and the coefficients C,, ; are

defined by

mé= T —1) 2 2 22

3
x / (cos8)24-™=2 gp (D.2)
0
If ¢ is a half-integer, (D.1) still applies with

Crnt = [(3-1)(3—2)...(3_%]-1 (mz—l,m2—3_..-21-)

3
x / (cos 9)%—™-2 gp. (D.3)
0

Using methods of complex analysis, we can show that the same formula (D.1) applies if

M is replaced by iM in (D.1).
/ & p(o? + M?) / dpo / B2 @2 — A2+ Mo, (D4

where ng) denotes the surface area of the n-dimensional unit sphere. Now using (D.1), we

find

n—1
/dnp(P +M2) * / dpo(— Cn—2a (“'Po M2)—Q+T 9510_)_2

= 2(~-1)"F Cp_ga C w1 Q0 p-2etn (D.5)

0,a—
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From (D.5), it is straight forward to compute

/d"p P +2p- Q+M2 /d"p (p+ Q)%+ M2 - Q2]
-a+3
= 2(-1)"T Cn-za Cpon1 Uty (M2-QF) . (D)

Now we can also evaluate

o (2@ 0) " = g [ (o 2@k
= (_1)—?2_(.__L—_7)_ Cr-2,a-1

a-1

—a43
X ozt 803 (M2-Q1) "7 Q. (D)

)—a+1

Using similar techniques we can evaluate

[ o (P +20-@+M2) " = (-)F (a-2-F) @- 1 @-2 7

X Cn—2,a-—2 CO, _1__3 Q( ) (M2 _ Q2> —a+l+§
x [g#y+ Vs —Q2)— (-a+1+3)
X (—zQva)] ) (D.8)

and

/d"p 2 (PP +2-Q+ M) =(-)*F (a-2-2)(@- 1) e-2)!
 Cn-ga-2Cy sz 2, (M2 - Q%) 77
X [n+2(a—1—g) (M2-Q2)_1Q2] , (D.9)

in which gy, is the metric tensor

Joo=—g11 =—9g22=—-933 =1, (D.10)

and all gy, with u # v are 0.
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We also note the following:

o0 u™ -1 8 [*® u™
/(; (u2+M2)ad —a—laMZ_/ (u2 + M2)®

Therefore, by using (D.1), we find

Crma = (a —1- ﬂ+—1> (@ =1)"1Cm a1

2

We can now use these results to evaluate

/ d"p (4P’1‘ - oig* ") [(Pl -Q)P% + Pf] h

=(-)F (a-2-3) (=17 =27 Cr-20-2C

Using (D.12) in (D.13), we find

/ d"p (41”1‘1’? - p"{y"") [(m -Q)P + p%] -

= ()% (a-1- g)_l Cn-2,0 Cp g1 ¥

n—2

x [g“”(4 —m) (i +@) ()" -4 - merer () '°‘+’] -

Setting a = 3, and taking the limit as n — 4, we find

/ d"py (4t} — pig™) (1 - @)+ ] -

(0)

a—l'-*'z'—:’Qn—2
[ (4 @) () -aa-merer (o))

n

= (-1)f x 208 ’pl [ (61 - @) +4Q*Q*] C23Cy

w2
2

= —1

|9 (% - @%) +4q#@"].

Rl =

In similar fashion we find

[annt [ -+ 4] = (0F2(a-1-F) (@~ 17 Cn-zamn
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X Coqngt g (0 )™ e

= (-1 20020 Cyp a1 Uy (4

2

) .

(D.11)

(D.12)

(D.13)

(D.14)

(D.15)

(D.16)



Therefore,

/d4pl p}ll [(pl - Q)2 + p%] = —i202’3 CO,% ng)_p? Qp.
2 ou
= 7—;- % (D.17)
1
Finally,
1
/d4P1P‘1‘ [(101 -Q)2+ p%] = 2(_1)3/202,3 Co,% QgO);)_%_
72 1
=Tty T3 (D.18)
2 p%
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Appendix E. Stopping Power

Consider the reaction

Z129 — 212X, (E.1)

in which X represents one or more particles produced in the process. Let Z; be an incident
particle, and Zy represent a fixed target, whose density is p (number of nuclei per unit
volume). Let o denote the cross section for the process (E.1), and E; the energy of the
system X. If we disregard the effect due to recoil of Zs, then by the conservation of energy,
the energy loss of Z] is equal to E;. Consider a slab of the target Z; of cross-sectional area

A and thickness Azx.

Figure E.1

The number of Z5 nuclei in this slab is pAAz. The cross section for an incident particle

2 to collide with a Z3, producing X is given by
do
Ao = pAA:z d_Ex dE;p, (EQ)

where we assume the energy of the produced system X to be between E; and E; + dE;.
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Therefore the probability for this process is

Ao

- = pAzx _d_a_ dE;, (E.3)

P(E;)dEz = e
x

in which P(Ez) represents the probability density for the process. Therefore the total energy

loss by the incident particle Z; per unit length is given by

dE lim 1
—_ = — 4
dr Az—-0 Az /EzP(Ex) 4Bz (E4a)
do

The — sign in (E.4) signifies the fact that energy is lost by Z; in the process, so that the
change in its energy dE is negative. See ref. 16, eq (6.4), page 741.

For two-photon processes of the kind that we have considered
E; =w + woy, (E.5)

in which again we use the “natural units” for which i = 1. The cross section is given by

(2.2a). By switching the variables of integration from wj, wp to wy, Ez, and using the fact
dwy dwy = dwy dE;g, (E.6)

which can be obtained from (E.5), (E.4b) can be written in the form

dE dw dE
~E=p [ [ G B Fln, Bo—wn) x ol Bz —w)) - (B7)
T

dwy [ dwo
= P/_W_I/-U{(wl +w) Flw1, wa)oyy(wr, we) (E-7b)

(E.7b) is the same as (2.7).
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T (s,V)

¢* (st vH

A Feynman diagram for the processes 2125 — 212980, 2129 — Z1Z9sts™,
and 2,23 — 2, Z,VV-. 15— 2



Figure 2.

Z,

A Feynman diagram for the process 2127 — Z12Z,HY.
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Figure A.1. Electromagnetic fields generated by a charge q moving along the raxis.
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Figure A.2. Photons emitted by two colliding nuclei, viewed along the direction of motion of

the nuclei in their center of momentum frame.



Figure A.3.

P (collision point of the photons

Cross-sectional view of the collision of two nuclei.
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Figure B.1b

Figure B.la-b. Second arder Feynman diagrams for the process vy — s¥s™.
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Figure B.2:

First order Feynman diagram for the process vy — s*s™.
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Figure C.la-b. Feynman diagrams representing fermion contribution to the process H? — .



Figure E.1:

A beam of particles Z) incident on a fixed target Z.
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